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Accurate Analysis of Tapered Planar
Transmission Lines for Microwave

Integrated Circuits
D. MIRSHEKAR-SYAHKAL AND J. BRIAN DAVIES, MEMBER, IEEE

Abstnzct-A broad claw of nomndfonn transndasion fines fs analysed

-~methodof -pled timmpmdedby~e~

solution of mdform fines. This cmnbinstion offers effieient computation of

the eoupffng eoeffieienta. Srnaff eoupfing aflows the rigormm field theory of

the spectral domafn approach to give explicitly the scattering matrfx of the

taper. Several stmetmq inchding ndcrostrip to coplanar Wavegukfe taper

and waveguide to ffn-ffne taper, are successfully analyzed, The computed

vafnes of reflection coefficients are compared with the values derived by a

simple hpedmwe method and with the meamred values. Reeuh from tk

experimentally investigated tapers show that the theory fs in good agree-

ment.

1. INTRODUCTION

s

O FAR, no accurate analysis has been given for

nonuniform planar transmission lines, as used in MIC.

Although in one case, for a microstrip taper [1], the author

approached the problem via the generalized telegraphist’s

equations [2], it is very common to investigate these types

of transitions through a simple impedance method [3].

However, since the notion of characteristic impedance in

planar transmission lines is contentious, (due to the mixed

dielectric loading, e.g., [4], [5]), the impedance method

cannot be regarded as a reliable technique. In fact, the

major complexity for efficient and accurate analysis of

uniform or nonuniform planar structures here lies in the

necessary treatment of hybrid modes to which there is no

closed-form solution.

Access to fast and accurate analysis of uniform planar

transmission lines by the spectral domain method [6] now

allows the three dimensional problems of tapered planar

transmission lines to be formulated through the powerful

coupled-mode theory [7], [8]. A combination of the cou-

pled-mode technique and the spectral domain approach is

adequately fast from the computing standpoint. Further-

more, the analysis is general, so that, unlike the treatment

given in [1] for rnicrostrip tapers, it can .be applied to a

broad class of planar transmission line tapers. The high

efficiency in this new approach is directly associated with

the existence of the spectral domain technique, giving the

opportunity of conversion of involved integrals into easily

computed series.
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Fig. 1. (a) A general transition. (b) A general planar taper. (c) A
portion of the planar taper of Fig. l(b).

II. THEORY

Let the uniform guide G ~ be connected to another

uniform guide Gz through a gentle transition (Fig. l(a)). It

is assumed that the first derivatives of all electrical and

mechanical parameters with respect to z at the joining

planes S’l and 5’2 vanish. Furthermore, the conductors are

perfect and dielectric media are assumed homogeneous,

isotropic, and Iossless. The system is also nonradiating

which could always be achieved by introducing a perfect

conductor enclosure.

Suppose that the transverse field components of normal

modes of propagation for a uniform guide with cross

section identical to S(z) be represented by et (x, y, ~Y) and

h,(x, y, B,). The normal modes satisfy Maxwell’s equa-
tions, and, in view of appropriate normalization, obey the
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following orthogonality relation [9]:

~,z~(~j~jDy)Xfi?(~jy, DP)azA=8yp (1)

where dfi~ is the Kronecker delta. As the uniform guide

changes its characteristic gradually in the direction of

propagation in accordance with the transition, the normal
modes no longer are a solution of Maxwell’s equations.

Yet they can be considered as a complete set of basis

functions to approximate the fields at any arbitrary cross

section of the taper. Thus, the following field expansions

in terms of normal fields are valid:

~,= 2 (~; +~y-)%(AY> B,(z)) (2)
Y

H,= ~ (a; ‘ay-)/2t(X, ~,~7(Z)). (3)
Y

Substituting (2) and (3) in Maxwell’s equations and noting

the orthogonality relation (l), results in coupled-mode

equations given by [7], [10]:

daP’ _
1 ~a~(~p,y~iy,p)~ +jPp(z)ap= = ~ ~

Y

= ; x@L7 *%P) (4)
Y

where

%Y=J 4(XJ’81(Z))X‘h’(x’;’B’(z)).azd-$ (5)
s(z)

J
%(X,Y,P,(Z))

k,, p=
az

X/zf(x, y,/3p(z)). azds.
s(z)

(6)

The above coupled differential equations (4) are valid as

long as there is gradual change in the direction of propa-

gation. However, for rapidly varying taper (not being

considered in this work), one might analyze the problem

via the more complicated procedure given by Stevenson

[8].

Since we are concerned with one forward traveling

wave and one backward traveling wave with identical

phase constant ~(z), (4) is reduced to the following form

if the other modes are neglected:

da+
~ +jp(z)a+ =0 (7)

da -

dz
— –j~(z)a– =C(z)a+ (8)

where

c(z)= +( K–i). (9)

In equations (7), (8), and (9), subscript 1 representing the

fundamental mode has been dropped. In (7), it is also

assumed that coupling from backward mode to forward

mode is negligible, which is true for gradual transitions,

[11], [12]. The coupling is, of course, reciprocal, but for

excitation in the a ● mode, (7) and (8) give the leading

terms in the overall scattering matfix.
Differential equations (7) and (8) have closed-form

solutions. Assuming that the uniform guide Gz in Fig. l(a)

extends to infinity, the following expressions are im-

mediately derived:

a+=a~exp(-j~zp({) d{) (lo)

a–= -a~~LC(z)exp(-j2~zP({) d{)dz (11)
o 0

where a{ denotes the reflected wave amplitude at S1

plane, while a; and L represent the amplitude of incident

wave and the length of transition, respectively. From (1 I),

the reflection coefficient is given by

R=-~LC(z)exp(-j2~zfl({) d{)dz. (12)
o

Considering the impedance technique for taper analysis

[3], an expression for reflection coefficient of a gradual

transition is as follows:

r= -~Lp(z)exp(-2j~zP({) d{)dz (13)
o

where

p(z)= –+~ln~(z) (14)

and Z(z) is normalized impedance.

Comparison of (12) and (13) reveals that the only

difference between these two expressions is in the ex-

change of functions C(z) and p(z). This means that any

difference between C(z) and p(z) leads to different reflec-

tion coefficients. It is emphasized again that the value of

characteristic impedance is contentious for planar trans-

mission lines, so that reflection coefficients computed

through (13) do not appear to be unique. Also, the imped-

ance method is usually implemented to single-mode oper-

ated transitions, while the coupled-mode approach has no

restriction as such and can be applied to multimode

conditions as well. Nonetheless (13), under certain condi-

tions, as concluded later, could be regarded as a possible

approximation to (12).

Now consider Fig. l(b), showing a general planar tran-

sition. We proceed with the assumptions that the sides

and the top conductor of the shield remain constant

throughout the transition region (Fig. l(b)). However,

these restrictions do not limit the generality of solution
and only ease the labor involved in achieving the analyti-

cal expression of C(z).

For any arbitrary cross section along the transition

region of Fig. l(b), the transverse fields of normal modes

can be obtained through the spectral domain technique

[5], [6], [13]. AS an example, these fields for the first
dielectric region in their transformed form are given by

-%, fi.1 ‘(%1> ~Y])Sh(yln~)/Sh( yl.hl) (15)

- - )Ch(y,.y)/Ch(y,nh,) (16)fixlj ~Y1 =j(hX1, eY1

where ;Xl, ~Y1, 6X1, ;Yl, and yl. are functions of z and are



MrRsmKAa—sYAHKAL AND DAVIES: TAPERSD PLANAR TRANSMISSION LINsS 125

available in detail in [5]. h ~ represents the thickness of the

mentioned dielectric region and may vary with z. Consid-

ering (l), equations (15) and (16) must be normalized

before they are substituted in any other expression.

Assuming (15) and (16) are normalized, C(z) is ob-

tained once the z-derivatives of the transverse field com-

ponents are known. For instance, from (15), the z-

derivative of the Fourier transform of HY1 is written as

follows:

Sh(yl.y) +B ~ Ch(ylny)
%1az Y1

‘~yl Sh(ylnhl )
~ ~ (17)

‘1 Ch(yln 1

where for example Fig. 2. Microstrip to coplanar waveguide taper.

(18)

Very similar expressions to those given above for the first

dielectric medium can be obtained for the other dielectric

regions as well.

Having substituted appropriate fields and their deriva-

tives in (9), C(z) for a transition with F layers is given by

(19)c(z)= ~ $l(ki-ti)

where

where hi in (20) and (21), like h, in (15) and (16), denotes

the thickness of the ith substrate and 2a represents the

transition width. From (15) to (18) it is concluded that the

integrals involved in ki and ii have closed-form solutions.

Thereby, C(z) is reduced to a simple series which can be

truncated and computed very efficiently. In fact, experi-

ence shows that most of the computation time is con-

sumed in finding the eigenvalues of normal modes, and

calculation of C(z) is not, itself, a time consuming pro-

cess.

The only difficulty in computation of C(z) arises from

the fact that parameters such as ~Y1 and yl. in(18) are not

analytically differentiable. To overcome this problem, the

taper length L is equally divided into M subsections with

planes normal to z. Thus, we can approximate as (Fig.

l(c))

akyi i;; ~–LP
yi

== Az
(22)

where Az = L/M and p and p + 1 denote the two consecu-

tive arbitrary cross sections. Approximation (22) will in-

troduce some central difference errors in the value of

C(z), especially at the ends of the taper where, according

to an earlier assumption, C(z) has to vanish. By increas-

ing M, this error has proved to have negligible effect on

the overall reflection coefficient. All the above formula-

tions are embedded in modified versions of the authors’

computer programs [14] and applied to various tapers.

Two of the more interesting transitions are examined as

follows.

III. APPLICATIONS

A. Microstnp to Coplanar Waoeguide Taper

Since coplanar waveguides have several advantages over

the ordinary microstrips [15], a transition connecting these

two lines would be of importance. This transition can be

achieved by tapering the ground planes of both structures,

Fig. 2. It is interesting to notice that the analysis of this

taper via the impedance technique (13), would be ahnost

impossible due to different definitions for the characteris-

tic impedance given in the literature. For this transition,

the bottom conductor and strip profiles are considered to

be as follows:

hl(z)=dsinz~

S(z) =(a–3w)sin2~ (23)

where a, w, d, and L are clearly shown in Fig. 2. The

above profiles (23) satisfy the requirements both of

vanishing C(z) at either end of the taper and of smooth

variation of geometry along the transition region. To find

c(z), transverse components of the normal modes in the

Fourier domain, (i.e., 15 and 16) are computed in a way

described in [5], [6]. It is found that the 5th-order solution

is adequately accurate, (i.e., P= Q = 5 in the notation of

[13]), while the number of subsections M maybe as high

as 40.
For M= 20, the values of C(z) and p(z) at 7.2 GHz

have been plotted in Fig. 3. This comparison reveals the

possible error present in the reflection coefficient evaluated

through the impedance method. However, the same com-

parison at low frequency (1 GHz) showed that C(z) and

p(z) are almost equal and so the choice between imped-

ance and coupled wave approach does not alter the overall

reflection coefficient substantially. It should be added that

the characteristic impedance used in calculation p(z) is

defined through a voltage-power relation in which the

voltage is defined from the center strip to the side wall in

microstrip, or, to the neighboring strip acting as ground

plane in the rest of the transition [5].

The return losses observed from each end of the transi-
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Fig. 4. Return loss versus frequency of two back-to-back microstrip to
coplanar waveguide tapers (Fig. 2).

tionhave been measuredly 8410A-HP network analyzer

over the frequency range of 4– 7.2 GHz, and are shown in

Fig. 4, together with the theoretical results. In principle,

the two measurements should read the same values. But,
in practice, due to asymmetry present in connecting the

OSM connectors and difficulties in making the two tapers

identical, the return losses are not equal from each

termination. This fact is clearly seen in the given graph.

Nonetheless, as is noticed from the same graph, except at

those frequencies where the return losses are small and

extraneous sources of reflections become conspicuous, the

two measured return losses could be considered almost

identical. Comparison of theory and experiment shown in

Fig. 4, suggests that a good agreement exists between

them, especially if a frequency shift of 0.3 GHz is per-

mitted. The discrepancy might be attributed to the devia-
tion of the practical transition from its theoretical model.

IV. X-BAND AND 16BAND WAVBGUIDE TO

FIN-LINE TAPER

Transferring electromagnetic energy from waveguide to

all metal fin line, or to the dielectric supported fin line

built in the body of the same waveguide, is often achieved

by tapering the metallic ridges. Therefore a portion of

[dm,m,,,, ,,, ), m]

Fig. 5. Ku-band waveguide to fin line to waveguide transition.

Fig. 6. Return loss versus frequency of the X-band transition.

incident energy being initially in TE,0 mode is converted

into finline mode [16]. Obviously the taper efficiency

varies with its profile.
A very good matched-load is readily available for the

rectangular waveguide; thus, for the purpose of accurate

measurement, it is desirable to construct two waveguide to

fin-line transitions positioned in opposite directions (Fig.

5). The gap profile for each taper is given by

w(z)=wo –(wO –wf)sinz~ (24)
LL

where WO,Wf, and L are shown in Fig. 5. The above profile

is chosen for convenience to ensure the smoothness of the

taper.
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Fig. 7. Return loss versus frequency of the Ka-band transition. A and
B denote measurements at different terminal planes.
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With reference to Fig. 5 given for the Ku-band transi-

tion, the dimensions are chosen to be L= 25 mm, 1=10
mm, Wf= 1 mm, and t= O. The theoretical and experimen-

tal values of return loss for this particular transition over

X-band are shown in Fig. 6. It is apparent from this graph

that the measurements are more consistent with the results

\ derived by the developed field method, (12), than those

given via the impedance approach, (13).

Very similar measurement and analysis as explained’ for

the X-band transition, were carried out for the Ku-band

back-to-back taper, Fig. 5. Results depicted in Fig. 7

reveal that this transition indeed reflects a small amount

of incident power. Therefore, due to mismatches and

imperfections present in the measuring instruments and in

the fabrication process, an accurate comparison of theory

and experiment is difficult. Nevertheless, at frequencies

where the theoretical transition reflection is most signifi-

cant, the effect of the mentioned extraneous sources of

error is minimized and then theory and experiment seem

consistent.

V. CONCLUSIONS

A class of MIC gradual planar transition has been

formulated and successfully applied through the coupled-

mode theory combined with the spectral domain ap-

proach. This combination gives the opportunity of fast

and accurate computation of reflection coefficient. In

some cases, such as a microstrip to coplanar-waveguide

taper, or waveguide to fin-line taper, it was found that the

computing times for this rigorous field technique and the

simple impedance approach were almost equal. On the

other hand, it was found that for some tapers, (e.g., where

the dielectric cross section remains constant along the

taper such as for a microstrip taper), the numerical

evaluation of C(z) requires more accurate field compo-

nents than those provided by the zero order solution of

the spectral domain technique, [5], [13]. The latter is

adequate for P(Z), but values of C(z) depend upon more

careful numerical differentiation of (22).

The impedance technique (13) along with the coupled-

mode method has also been studied in other transitions,

[5]. It appears that this simple method is only valid at low

frequencies for those tapers whose associated normal

modes can be derived through a quasi-static solution.

Since the presented method has been developed in a

general form, only one computer program with some ~

modification can be utilised for a broad class of transi-

tions.
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Maximum Q-Factor of Microstrip Resonators

ANAND GOPINATH, SENIOR MEMBER, IEEE

Abstract-The quatity factors of micrmtrip haff-wavelength reanmtms

have been cafeolated as a function of aubatratc tfdcknear+ for frequeneiea

in the range 8-% GHs, for different cr. Conductor, dielectrk and

radiation Iosaea have been included. The optimum substrate tbieknesa for

the rOaxhUU Q-factor for ~-~ mkrostrip reaonatora has been derived m

a function of frequency for different dielectric constants.

I. INTRODUCTION

M ICROSTRIP is used as the guiding and intercon-

necting structure in microwave integrated circuit

modules up to 100 GHz. While microstrip conductor and

dielectric dissipation may be expressed as loss per unit

length, radiation losses may only be related to specific

lengths of line. The quality factors of resonators, which

include radiation losses, thus provide a guide to the losses

that occur in microstrip. The Q-factors of half-wavelength

resonators have been calculated as functions of substrate

thickness and frequency, for some ccmunonly used dielec-

tric material. Belohoubek and Denlinger [1] have previ-

ously reported Q-f actor calculations for A/4 resonators

using Pucel, Masse, and Hartwig’s method [2] for conduc-

tor loss and Lewin’s method [3] for radiation loss, over a

limited frequency range. Our calculations show good

agreement with their results for the 8-GHz case.

From these results, the optimum substrate thickness for

maximum Q-factors of half-wavelength resonators may be

obtained for a given frequency. In cases where radiation

losses and spurious coupling problems exist, these calcula-

tions provide a guide to the optimum substrate thickness.

When packaging eliminates these effects, the thickness is

limited by the spurious mode excitation in the structure.

Choice of substrate thickness may also be determined by

Manuscript received July 14, 1980; revised September 24, 1980. This
work was sponsored by the Department of the Army. The views and
conclusions contained in this document are those of the contractor and
should not be interpreted as necessarily representing the official policies,
either expressed or implied, of the United StaI es Government.
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thermal conductance, circuit, and processing considera-

tions as well as material availability.

II. THEORETICAL CONSIDERATIONS

The stored energy U, in a Ag /2 resonator with a voltage

distribution of Vsin ~~z is given by

~2

‘= 8Zof
(1)

where 20 is the resonator impedance and~ is the frequency.

The conductor and dielectric losses W1 in the resonator

are given by

w’/= +; Ag(ad+ac) (2)
o

where a= and ad are the conductor and dielectric loss

constants in nepers per unit length. Thus the circuit qual-

ity factor Q. is given by

29rfu
QO=7= ~ ~a:+ad).

1 1?
(3)

The radiation Q is estimated by calculating the total

power radiated W, and evaluating the ratio

2?Tfu
Q,==.

r

The total quality factor Q, is given by

11:1

~=Qo Q.”

(4)

(5)

The conductor loss constant aC is estimated from the

expression [2]

where

~

J
gP

I
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R,

[f

+ w/2 ~

J

+’W
J. dx + Jg~ dx

a’= 2Z012 —w/2 —m I
strip current;

ground plane current;

total strip or ground plane current;
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