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Accurate Analysis of Tapered Planar
Transmission Lines for Microwave
Integrated Circuits

D. MIRSHEKAR-SYAHKAL anpD J. BRIAN DAVIES, MEMBER, IEEE

Abstract— A broad class of nonuniform transmission lines is analyzed
through the method of coupled modes accompanied by the spectral domain
solution of uniform lines, This combination offers efficient computation of
the coupling coefficients. Small coupling allows the rigorous field theory of
the spectral domain approach to give explicitly the scattering matrix of the
taper. Several structures, including microstrip to coplanar waveguide taper
and waveguide to fin-line taper, are successfully analyzed. The computed
values of reflection coefficients are compared with the values derived by a
simple impedance method and with the measured values. Results from the

experimentally investigated tapers show that the theory is in good agree-
ment.

I. INTRODUCTION

O FAR, no accurate analysis has been given for

nonuniform planar transmission lines, as used in MIC.
Although in one case, for a microstrip taper [1}, the author
approached the problem via the generalized telegraphist’s
equations [2], it is very common to investigate these types
of transitions through a simple impedance method [3].
However, since the notion of characteristic impedance in
planar transmission lines is contentious, (due to the mixed
dielectric loading, e.g., [4], [5]), the impedance method
cannot be regarded as a reliable technique. In fact, the
major complexity for efficient and accurate analysis of
uniform or nonuniform planar structures here lies in the
necessary treatment of hybrid modes to which there is no
closed-form solution.

Access to fast and accurate analysis of uniform planar
transmission lines by the spectral domain method [6] now
allows the three dimensional problems of tapered planar
transmission lines to be formulated through the powerful
coupled-mode theory [7], [8]. A combination of the cou-
pled-mode technique and the spectral domain approach is
adequately fast from the computing standpoint. Further-
more, the analysis is general, so that, unlike the treatment
given in [1] for microstrip tapers, it can_be applied to a
broad class of planar transmission line tapers. The high
efficiency in this new approach is directly associated with
the existence of the spectral domain technique, giving the
opportunity of conversion of involved integrals into easily
computed series.
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(b)' A general planar taper. (c) A
portion of the planar taper of Fig. 1(b).

Fig. 1. (a) A general transition.

II. THEORY

Let the uniform guide G, be connected to another
uniform guide G, through a gentle transition (Fig. 1(a)). It
is assumed that the first derivatives of 'all electrical and
mechanical parameters with respect to z at the joining
planes S; and S, vanish. Furthermore, the conductors are
perfect and dielectric media are assumed homogeneous,
isotropic, and lossless. The system is also nonradiating
which could always be achieved by introducing a perfect
conductor enclosure.

Suppose that the transverse field components of normal
modes of propagation for a uniform guide with cross
section identical to S(z) be represented by e,(x, y, B,) and
h,(x, y,,). The normal modes satisfy Maxwell’s equa-
tions, and, in view of appropriate normalization, obey the
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following orthogonality relation [9]:

[ edx.9.8) %kt (x,9,8,)-a.ds=s,, (1)
S(z)

where §,. is the Kronecker delta. As the uniform guide
changes its characteristic gradually in the direction of
propagation in accordance with the transition, the normal
modes no longer are a solution of Maxwell’s equations.
Yet they can be considered as a complete set of basis
functions to approximate the fields at any arbitrary cross
section of the taper. Thus, the following field expansions
in terms of normal fields are valid:

E = E (a; +a, )e,(x, Y :87(2)) (2)

H,=2 (a} —a; )h,(x,y,B,(2)). 3)
Y
Substituting (2) and (3) in Maxwell’s equations and noting
the orthogonality relation (1), results in coupled-mode
equations given by [7], [10]:
aF - 1 .
d; +JB'L(Z)a’L =z _2- 2 a;(KP-:‘Y +K7’I“')
Y

_1 _ ~
+ 2 zav (Ku,v iK‘/,u) (4)
N
where

Bl P B s 5

K, =L(z)e;"(x,y,ﬁn(z))><

. de,(x,y,B,(z))
R [~

oy Xht(x,y,B,(2))-a,ds.

(6)

The above coupled differential equations (4) are valid as
long as there is gradual change in the direction of propa-
gation. However, for rapidly varying taper (not being
considered in this work), one might analyze the problem
via the more complicated procedure given by Stevenson
[8].

Since we are concerned with one forward traveling
wave and one backward traveling wave with identical
phase constant B8(z), (4) is reduced to the following form
if the other modes are neglected:

da™*

— +iB(z)at =0 )
e —jB(z)a =C(2)a* ®)

where
C(2)=5(K-R). )

In equations (7), (8), and (9), subscript 1 representing the
fundamental mode has been dropped. In (7), it is also
assumed that coupling from backward mode to forward
mode is negligible, which is true for gradual transitions,
[11], [12]. The coupling is, of course, reciprocal, but for

excitation in the a* mode, (7) and (8) give the leading
terms in the overall scattering matrix.

Differential equations (7) and (8) have closed-form
solutions. Assuming that the uniform guide G, in Fig. 1(a)
extends to infinity, the following expressions are im-
mediately derived:

a*=aj exp(~ [ B &) (10)

a_=—a;[)LC(z)exp(—j2j:,8(§)d§')dz (11)

where a, denotes the reflected wave amplitude at S,
plane, while a;” and L represent the amplitude of incident
wave and the length of transition, respectively. From (11),
the reflection coefficient is given by

L z

rR=- c(z)exp(—jzf ,B(g)dg)dz. (12)

0 0
Considering the impedance technique for taper analysis
[3], an expression for reflection coefficient of a gradual
transition is as follows:

r=—[“o@ew(-2i[ b)) (13)

where

p(2)=—5 L 1nZ(z) (14)

and Z(z) is normalized impedance.

Comparison of (12) and (13) reveals that the only
difference between these two expressions is in the ex-
change of functions C(z) and p(z). This means that any
difference between C(z) and p(z) leads to different reflec-
tion coefficients. It is emphasized again that the value of
characteristic impedance is contentious for planar trans-
mission lines, so that reflection coefficients computed
through (13) do not appear to be unique. Also, the imped-
ance method is usually implemented to single-mode oper-
ated transitions, while the coupled-mode approach has no
restriction as such and can be applied to multimode
conditions as well. Nonetheless (13), under certain condi-
tions, as concluded later, could be regarded as a possible
approximation to (12).

Now consider Fig. 1(b), showing a general planar tran-
sition. We proceed with the assumptions that the sides
and the top conductor of the shield remain constant
throughout the transition region (Fig. 1(b)). However,
these restrictions do not limit the generality of solution
and only ease the labor involved in achieving the analyti-
cal expression of C(z).

For any arbitrary cross section along the transition
region of Fig. 1(b), the transverse fields of normal modes
can be obtained through the spectral domain technique
[S], [6], [13]. As an example, these fields for the first
dielectric region in their transformed form are given by

E~xl’ﬁyl=(éxl’ﬁyl)Sh(Ylny)/Sh(YInhl) (15)
ﬁxl’éyl =j(};x1aéyl)Ch(Y1nJ’)/Ch(71nh1) (16)

where .y, h,;, h,y, €, and v, are functions of z and are
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available in detail in [5]. &, represents the thickness of the
mentioned dielectric region and may vary with z. Consid-
ering (1), equations (15) and (16) must be normalized
before they are substituted in any other expression.

Assuming (15) and (16) are normalized, C(z) is ob-
tained once the z-derivatives of the transverse field com-
ponents are known. For instance, from (15), the :z-
derivative of the Fourier transform of H , is written as
follows:

Sh(Ylny)
. Sh(YInhl) .

Ch (‘Ylny )

H =4
7! Y Ch(y,h)

d
3 17

where for example
_ 9~ d a .
Ayl_-zghyl_ Yln'a'z'hl"'hlgz}’ln hy1C°th(Ylnh1)~
(18)

~ Very similar expressions to those given above for the first
dielectric medium can be obtained for the other dielectric
regions as well.

Having substituted appropriate fields and their deriva-
tives in (9), C(z) for a transition with F layers is given by

F
C()=5 3 (k~K) (19)

i=1

where

where 4, in (20) and (21), like 4, in (15) and (16), denotes
the thickness of the ith substrate and 2a represents the
transition width. From (15) to (18) it is concluded that the
integrals involved in k, and k; have closed-form solutions.
Thereby, C(z) is reduced to a simple series which can be
truncated and computed very efficiently. In fact, experi-
ence shows that most of the computation time is con-
sumed in finding the eigenvalues of normal modes, and
calculation of C(z) is not, itself, a time consuming pro-
cess. )

The only difficulty in computation of C(z) arises from
. the fact that parameters such as & 1 and vy, in (18) are not
analytically differentiable. To overcome this problem, the
taper length L is equally divided into M subsections with
planes normal to z. Thus, we can approximate as (Fig.

1(c))
oh,,; - hf,.“ —hy, 2)
dz Az
where Az=L/M and p and p+ 1 denote the two consecu-
tive arbitrary cross sections. Approximation (22) will in-
troduce some central difference errors in the value of
C(z), especially at the ends of the taper where, according
to an earlier assumption, C(z) has to vanish. By increas-
ing M, this error has proved to have negligible effect on
the overall reflection coefficient. All the above formula-
tions are embedded in modified versions of the authors’
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Fig. 2. Microstrip to coplanar waveguide taper.

computer programs [14] and applied to various tdpers.
Two of the more interesting transitions are examined as
follows.

III. APPLICATIONS

A. Microstrip to Coplanar Waveguide Taper

Since coplanar waveguides have several advantages over
the ordinary microstrips [15], a transition connecting these
two lines would be of importance. This transition can be
achieved by tapering the ground planes of both structures,
Fig. 2. It is interesting to notice that the analysis of this
taper via the impedance technique (13), would be almost
impossible due to different definitions for the characteris-
tic impedance given in the literature. For this transition,
the bottom conductor and strip profiles are considered to
be as follows:

Tz

2L
S(z)=(a—3w)sin?

hy(z)=dsin?

7z
2L

where a, w, d, and L are clearly shown in Fig. 2. The
above profiles (23) satisfy the requirements both of
vanishing C(z) at either end of the taper and of smooth
variation of geometry along the transition region. To find
C(z), transverse components of the normal modes in the
Fourier domain, (i.e., 15 and 16) are computed in a way
described in [5], [6]. It is found that the Sth-order solution
is adequately accurate, (i.e., P=0Q=35 in the notation of
[13]), while the number of subsections M may be as high
as 40.

For M =20, the values of C(z) and p(z) at 7.2 GHz
have been plotted in Fig. 3. This comparison reveals the
possible error present in the reflection coefficient evaluated
through the impedance method. However, the same com-
parison at low frequency (1 GHz) showed that C(z) and
p(z) are almost equal and so the choice between imped-
ance and coupled wave approach does not alter the overall
reflection coefficient substantially. It should be added that
the characteristic impedance used in calculation p(z) is
defined through a voltage—power relation in which the
voltage is defined from the center strip to the side wall in
microstrip, or, to the neighboring strip acting as ground
plane in the rest of the transition [5].

The return losses observed from each end of the transi-

(23)
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Fig. 3. Comparison of p(z) and C(z) along the transition length of
Fig. 2.
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Fig. 4. Return loss versus frequency of two back-to-back microstrip to

coplanar waveguide tapers (Fig. 2).

tion have been measured by 8410A-HP network analyzer
over the frequency range of 4-7.2 GHz, and are shown in
Fig. 4, together with the theoretical results. In principle,
the two measurements should read the same values. But,
in practice, due to asymmetry present in connecting the
OSM connectors and difficulties in making the two tapers
identical, the return losses are not equal from each
termination. This fact is clearly seen in the given graph.
Nonetheless, as is noticed from the same graph, except at
those frequencies where the return losses are small and
extraneous sources of reflections become conspicuous, the
two measured return losses could be considered almost
identical. Comparison of theory and experiment shown in
Fig. 4, suggests that a good agreement exists between
them, especially if a frequency shift of 0.3 GHz is per-
mitted. The discrepency might be attributed to the devia-
tion of the practical transition from its theoretical model.

IV. X-BAND AND Ka-BAND WAVEGUIDE TO
FIN-LINE TAPER

Transferring electromagnetic energy from waveguide to
all metal fin line, or to the dielectric supported fin line
built in the body of the same waveguide, is often achieved
by tapering the metallic ridges. Therefore a portion of
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Fig. 5. Ka-band waveguide to fin line to waveguide transition.
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Fig. 6. Return loss versus frequency of the X-band transition.

incident energy being initially in TE,;, mode is converted
into finline mode [16]. Obviously the taper efficiency
varies with its profile.

A very good matched-load is readily available for the
rectangular waveguide; thus, for the purpose of accurate
measurement, it is desirable to construct two waveguide to
fin-line transitions positioned in opposite directions (Fig.
5). The gap profile for each taper is given by
7z

2L

where wy, wy, and L are shown in Fig. 5. The above profile
is chosen for convenience to ensure the smoothness of the
taper.

w(z)=wy — (W, —w;)sin’ (24
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Fig. 7. Return loss versus frequency of the Ka-band transition. 4 and
B denote measurements at different terminal planes.

With reference to Fig. 5 given for the Ka-band transi-
tion, the dimensions are chosen to be L=25 mm, /=10
mm, w; =1 mm, and 7=0. The theoretical and experimen-
tal values of return loss for this particular transition over
X-band are shown in Fig. 6. It is apparent from this graph
that the measurements are more consistent with the results
derived by the developed field method, (12), than those
given via the impedance approach, (13).

Very similar measurement and analysis as explamed for
the X-band transition, were carried out for the Ka-band
back-to-back taper, Fig. 5. Results depicted in Fig. 7

_reveal that this transition indeed reflects a small amount
of incident power. Therefore, due to mismatches and
imperfections present in the measuring instruments and in
the fabrication process, an accurate comparison of theory
and experiment is difficult. Nevertheless, at frequencies
where the theoretical transition reflection is most signifi-
cant, the effect of the mentioned extraneous sources of
error is minimized and then theory and experiment seem
consistent.

V. CONCLUSIONS

A class of MIC gradual planar transition has been
formulated and successfully applied through the coupled-
mode theory combined with the spectral domain ap-
proach. This combination gives the opportunity of fast
and accurate computation of reflection coefficient. In
some cases, such as a microstrip to coplanar-waveguide
taper, or waveguide to fin-line taper, it was found that the
computing times for this rigorous field technique and the
simple impedance approach were almost equal. On the
other hand, it was found that for some tapers, (e.g., where
the dielectric cross section remains constant along the
taper such as for a microstrip taper), the numerical
.evaluation of C(z) requires more accurate field compo-

nents than those provided by the zero order solution of
the spectral domain technique, [5], [13]. The latter is
adequate for p(z), but values of C(z) depend upon more
careful numerical differentiation of (22).

The impedance technique (13) along with the coupled-
mode method has also been studied in other transitions,
[5]. It appears that this simple method is only valid at low
frequencies for those tapers whose associated normal
modes can be derived through a quasi-static solution.
Since the presented method has been developed in a
general form, only one computer program with some -
modification can be utilised for a broad class of transi-
tions. ‘
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Maximum Q-Factor of Microstrip Resonators

ANAND GOPINATH, SENIOR MEMBER, IEEE

Abstract—The quality factors of microstrip half-wavelength resonators
have been calculated as a function of substrate thickness, for frequencies
in the range 8-96 GHz, for different ¢,. Conductor, dielectric, and
radiation losses have been included. The optimum substrate thickness for
the maximum Q-factor for 50-Q microstrip resonators has been derived as
a function of frequency for different dielectric constants.

I. INTRODUCTION

ICROSTRIP is used as the guiding and intercon-

necting structure in microwave integrated circuit
modules up to 100 GHz. While microstrip conductor and
dielectric dissipation may be expressed as loss per unit
length, radiation losses may only be related to specific
lengths of line. The quality factors of resonators, which
include radiation losses, thus provide a guide to the losses
that occur in microstrip. The Q-factors of half-wavelength
resonators have been calculated as functions of substrate
thickness and frequency, for some commonly used dielec-
tric material. Belohoubek and Denlinger [1] have previ-
ously reported Q-factor calculations for A/4 resonators
using Pucel, Masse, and Hartwig’s method [2] for conduc-
tor loss and Lewin’s method [3] for radiation loss, over a
limited frequency range. Our calculations show good
agreement with their results for the 8-GHz case.

From these results, the optimum substrate thickness for
maximum Q-factors of half-wavelength resonators may be
obtained for a given frequency. In cases where radiation
losses and spurious coupling problems exist, these calcula-
tions provide a guide to the optimum substrate thickness.
When packaging eliminates these effects, the thickness is
limited by the spurious mode excitation in the structure.
Choice of substrate thickness may also be determined by
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thermal conductance, circuit, and processing considera-
tions as well as material availability.

II. THEORETICAL CONSIDERATIONS

The stored energy U, in a A, /2 resonator with a voltage
distribution of Vsin B,z is given by
'V2

V=377

(M
where Z,, is the resonator impedance and fis the frequency.
The conductor and dielectric losses W, in the resonator

are given by
w,= 1 LZA + 2
) Z, g(ad a,) 2
where a, and «, are the conductor and dielectric loss
constants in nepers per unit length, Thus the circuit qual-

ity factor Q, is given by

00 = 277fU= 7
0 I/VI Ag(ar+ad) .

®)

The radiation Q is estimated by calculating the total
power radiated W, and evaluating the ratio

_2qfU
0, = R 4
The total quality factor Q, is given by
1 1 1
—_— =t . 5
0,70, "0 )

The conductor loss constant a, is estimated from the

expression [2]
2 + o0
[ raxr [ J;pdx]

(6)

Rs
o, =
22012 -w/2

where
J strip current;
J ground plane current;

£p
1 total strip or ground plane current;
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